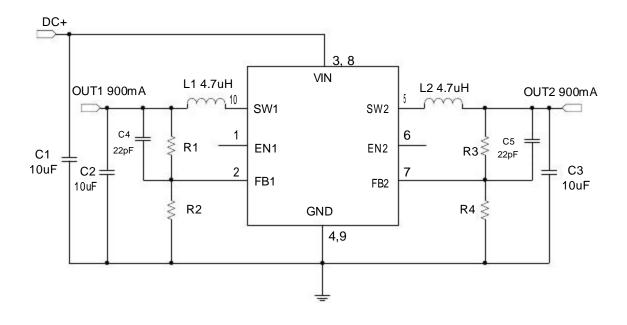
Dual 900mA Synchronous Buck DC/DC Converter

Features

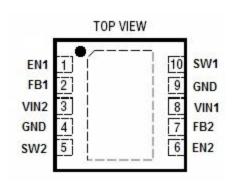
- Up to 95% Efficiency
- Current mode operation for excellent line and load transient response
- Low quiescent current: 460 Au
- Low Switch on Resistance R_{DS(ON)}, Internal Switch: $0.35~\Omega$
- Output voltage 0.6V 5.5V
- Automatic PWM/PFM mode switching
- No Schottky diode required
- 1.4MHz fixed frequency switching
- Short-Circuit protection
- Shutdown quiescent current: < 1 Au</p>
- Low profile DFN3*3-10L package (lead-free packaging is now available)

Application

- Digital cameras and MP3
- Palmtop computers / PDAs
- Cellular phones
- Wireless handsets and DSL modems
- PC cards
- Portable media players


Description

The JTM5201 is high efficiency synchronous, dual PWM step-down DC/DC converters working under an input voltage range of 2.5V to 5.5V. This feature makes the JTM5201 suitable for single Li-Lon battery-powered applications. 100% duty cycle capability extends battery life in portable devices, while the quiescent current is 200 Apwith no load, and drops to < 1 Apin shutdown.


The internal synchronous switch is desired to increase efficiency without an external Schottky diode. The 1.4 MHz fixed switching frequency allows the using of tiny, low profile inductors and ceramic capacitors, which minimized overall solution footprint.

The JTM5201 converters are available in the industry standard DFN3*3-10L power packages (or upon request).

Typical Application

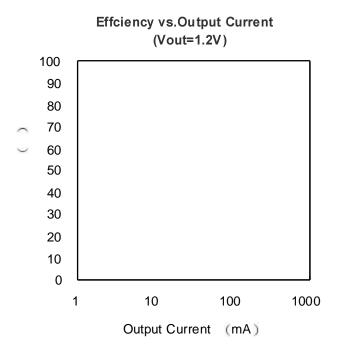
Pin Assignment

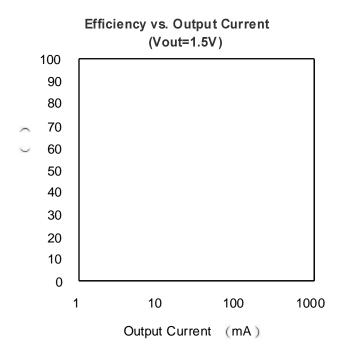
DFN3*3-10L

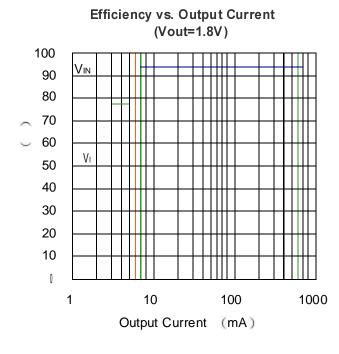
PIN NUMBER DFN3*3-10L	PIN NAME	FUNCTION
1	EN1	ON/OFF Control 1 (High Enable)
2	FB1	Output feedback 1
3	VIN2	Input 2
4	GND	Ground
5	SW2	Switch Output 2
6	EN2	ON/OFF Control 2 (High Enable)
7	FB2	Output feedback 2
8	VIN1	Input 1
9	GND	Ground
10	SW1	Switch Output 1

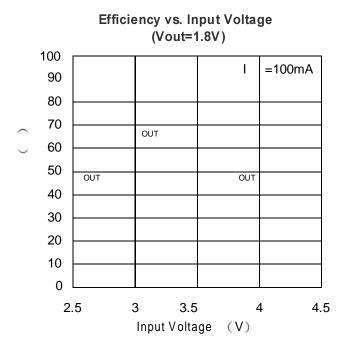
Absolute Maximum Ratings

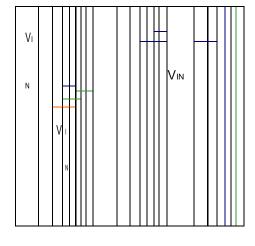
>	Power Dissipation	Internally	limited	
>	V _{IN}	0.3 V	\sim 4	⊦ 6 V
7	Von/off 0.3	v ~	$(V_{IN} + 0.3)$	3) V
>	Vsw C	0.3 V ~	(VIN + 0.	3) V
×	V _{FB}	0.3 V	\sim +	- 6 V
>	lsw		1.3A	
×	Operating Temperature Range	40	°C ~ + 8	85 °C
>	Lead Temperature (Soldering 10 sec.)	+	300	$^{\circ}$ C
7	Storage Temperature Range	65	C ~ + 15	50 °C
>				

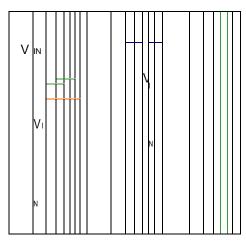

Electrical Characteristics

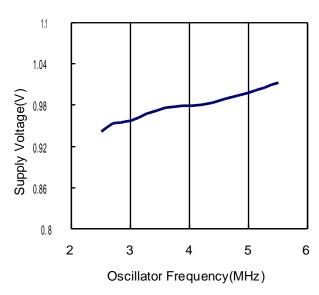

Operating Conditions: $T_A=25$ $\ ^{\circ}$, $V_{IN}=3.6V$ unless otherwise specified.


SYMBOL	PAR AMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Vouт	Output Voltage	I оит = 100mA, R2(4)/R1(3)=2	1.75	1.80	1.85	V
VIN	Input Voltage Range		2.5		5.5	V
V _{FB}	Regulated Voltage	T _A = 25	0.5880	0.6	0.6120	V
lfв	Feedback Current				±30	nA
VFB	VREF	Vin=2.5 V~5.5 V		0.03	0.4	%/V
Fosc	Oscillator Frequency	VFB = 0.6 V or Vout = 100%	1.1	1.4	1.7	MHz
lα	Quiescent Current	$V_{FB} = 0.5 V or V_{OUT} = 90\%, I_{LOAD} = 0 A$		200	300	А
Is	Shutdown Current	VEN = 0V, VIN = 4.2 V		0.1	1	А
lрк	Peak Inductor Current	$V_{IN} = 3V$, $V_{FB} = 0.5 V$ or $V_{OUT} = 90\%$, Duty Cycle $< 35\%$	0.75	0.9	1	А
RPFET	Rds(ON) of P-Channel FET	Isw = 100mA		0.3		
RNFET	Rds(ON) of N-Channel FET	Isw = -100mA		0.39		
EFFI	Efficiency	When connected to ext. components VIN=EN=3.6 V, IOUT=100mA		93		%
Vouт	Vout Line Regulation	V _{IN} =2.5 V~5.5 V		0.03	0.3	%/V
Vloadreg	Vouт Load Regulation			0.33		%

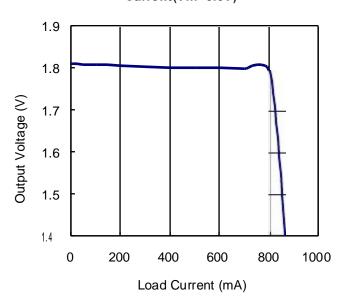

^{*} EFFI = [(Output Voltage × Output Current) / (Input Voltage × Input Current)] × 100%


Typical Performance Characteristics

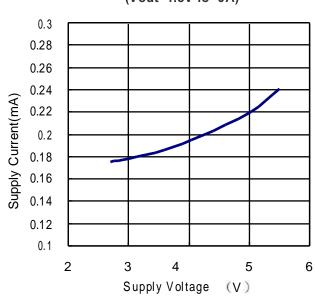


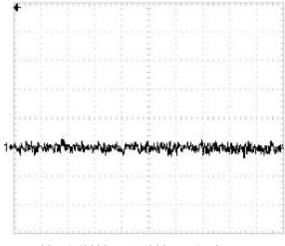


Efficiency %

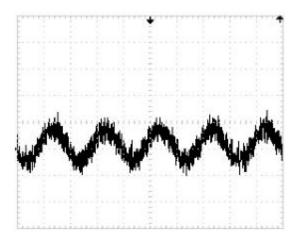


Efficiency %

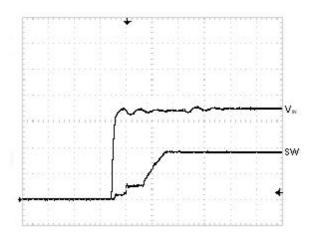

Oscillator Frequency vs. Supply Voltage(Vout=1.8V lo=100mA)


Output Voltage vs. Load Current(Vin=3.6V)

Supply Current vs Supply Voltage (Vout=1.8V lo=0A)



Output Noise 100mV/DIV 2ms/DIV AC COUPLED)


VIN=3.6V VOUT=1.8V ILOAD=0mA

Output Noise 20mV/DIV 10ms/DIV AC COUPLED)

VIN=3.6V VOUT=1.8V ILOAD=200mA

Start –up from Shutdown Input and Output Noise 1 V/DIV 100ns/DIV

Application Information PIN ASSIGNMENT

EN1 (Pin 1): First en control Input. Forcing this pin above 1.5V enables the part. Forcing this pin below 0.3V shuts down the device. In shutdown, all functions are disabled drawing <1∞A supply current. Do not leave EN floating.

FB1 (Pin 2): Output feedback 1. Receive the feedback voltage from an external resistive divider across the output. In the adjustable version, the output voltage is set by a resistive divider according to the following formula: $V_{OUT1} = 0.6V \cdot [1 + (R1/R2)]$.

VIN2 (Pin 3): Second main Supply Pin. It must be closely decoupled to GND, or with a 10 F or greater ceramic capacitor.

GND (Pin 49): Ground Pin.

SW2 (Pin 5): Second switch Node Connection to Inductor. This pin connects to the drains of the internal main and synchronous power MOSFET switches.

EN2 (Pin 6): Second en control Input. Forcing this pin above 1.5V enables the part. Forcing this pin below 0.3V shuts down the device. In shutdown, all functions are disabled drawing <1∞A supply current. Do not leave EN floating.

FB2(Pin 7): Output feedback 2. Receive the feedback voltage from an external resistive divider across the output. In the adjustable version, the output voltage is set by a resistive divider according to the following formula: $V_{OUT2} = 0.6V \cdot [1 + (R3/R4)]$.

VIN1 (Pin 8): First main Supply Pin .lt must be closely decoupled to GND, or with a 10 F or μ greater ceramic capacitor.

SW1 (Pin 10): First switch Node Connection to Inductor. This pin connects to the drains of the internal main and synchronous power MOSFET switches.

Application Information

The basic JTM5201 application circuit is shown in Typical Application Circuit. External component selection is determined by the maximum load

Inductor Selection

For most applications, the value of the inductor will fall in the range of $1 \propto H$ to $4.7 \propto H$. Its value is chosen based on the desired ripple current. Large value inductors lower ripple current and small value inductors result in higher ripple currents. Higher V_{IN} or V_{OUT} also increases the ripple current as shown in equation 1. A reasonable starting point for setting ripple current is $\Delta I_L = 360 \text{mA}$ (40% of 900mA).

$$\Delta I_L = \frac{1}{(f)(L)} V_{OUT} \bigg(1 - \frac{V_{OUT}}{V_{IN}} \bigg)$$

The DC current rating of the inductor should be at least equal to the maximum load current plus half the ripple current to prevent core saturation. Thus, a 1.08A rated inductor should be enough for most applications (900mA + 180mA). For better efficiency, choose a low DC-resistance inductor.

Different core materials and shapes will change the size/current and price/current relationship of an inductor. Toroid or shielded pot cores in ferrite or perm alloy materials are small and don't radiate much energy, but generally cost more than powdered iron core inductors with similar electrical characteristics. The choice of which style inductor to use often depends more on the price vs. size requirements and any radiated field/EMI requirements than on what the JTM5201 requires to operate.

Output and Input Capacitor Selection

current and begins with the selection of the inductor value and operating frequency followed by CIN and COUT.

In continuous mode, the source current of the top MOSFET is a square wave of duty cycle Vout/Vin. To prevent large voltage transients, a low ESR input capacitor sized for the maximum RMS current must be used. The maximum RMS capacitor current is given by:

$$C_{IN}$$
 required $I_{RMS} \simeq I_{OMAX} \left[\frac{V_{OUT}(V_{IN} - V_{OUT})}{V_{IN}} \right]^{1/2}$

This formula has a maximum at $V_{\text{IN}} = 2V_{\text{OUT}}$, where $I_{\text{RMS}} = I_{\text{OUT}}/2$. This simple worst-case condition is commonly used for design because even significant deviations do not offer much relief. Note that the capacitor manufacturer's ripple current ratings are often based on 2000 hours of life. This makes it advisable to further derate the capacitor, or choose a capacitor rated at a higher temperature than required. Always consult the manufacturer if there is any question.

The selection of Cout is driven by the required effective series resistance (ESR).

Typically, once the ESR requirement for Cout has been met, the RMS current rating generally far exceeds the IRIPPLE(P-P) requirement. The output ripple **V**OUT is determined by:

$$\Delta V_{OUT} = \Delta I_L \left(ESR + \frac{1}{8fC_{OUT}} \right)$$

Where f = operating frequency, C_{OUT} = output capacitance and ΔI_L = ripple current in the inductor. For a fixed output voltage, the output

ripple is highest at maximum input voltage since ΔI_L increases with input voltage.

Aluminum electrolytic and dry tantalum capacitors are both available in surface mount configurations. In the case of tantalum, it is critical that the capacitors are surge tested for use in switching power supplies. An excellent choice is the AVXTPS series of surface mount tantalum. These are specially constructed and tested for low ESR so they give the lowest ESR for a given volume. Other capacitor types include

Sanyo POSCAP, Kemet T510 and T495 series, and Sprague 593D and 595D series. Consult the manufacturer for other specific recommendations.

Suggested Inductors

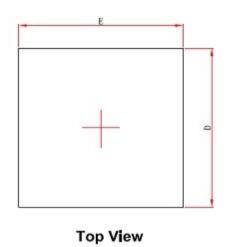
Component Supplier	Series	Inductance (uH)	DCR (m)	Current Rating (mA)	Dimensions (mm)
TAIYO YUDEN	NR 3015	2.2	60	1480	3 x 3 x 1.5
TAIYO YUDEN	NR 3015	4.7	120	1020	3 x 3 x 1.5
Sumida	CDRH2D14	2.2	75	1500	4.5 x 3.2 x 1.55
Sumida	CDRH2D14	4.7	135	1000	4.5 x 3.2 x 1.55
GOTREND	GTSD32	2.2	58	1500	3.85 x 3.85 x 1.8
GOTREND	GTSD32	4.7	146	1100	3.85 x 3.85 x 1.8

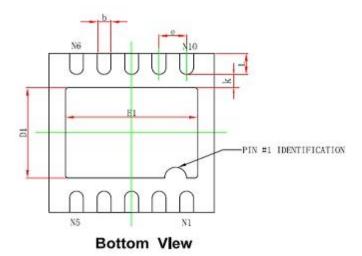
Suggested Capacitors for CIN and COUT

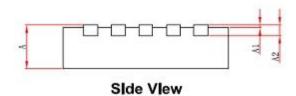
Component Supplier	Part No.	Capacitance (uF)	Case Size
TDK	C1608JB0J475M	4.7	0603
TDK	C2012JB0J106M	10	0805
MURATA	GRM188R60J475KE19	4.7	0603
MURATA	GRM219R60J106ME19	10	0805
MURATA	GRM219R60J106KE19	10	0805
TAIYO YUDEN	JMK107BJ475RA	4.7	0603
TAIYO YUDEN	JMK107BJ106MA	10	0603
TAIYO YUDEN	JMK212BJ106RD	10	0805

Efficiency Considerations

The efficiency of a switching regulator is equal to the output power divided by the input power times 100%. It is often useful to analyze individual losses to determine what is limiting the efficiency and which change would produce the most improvement. Efficiency can be expressed as: Efficiency = 100% - (L1+ L2+ L3+ ...) where L1, L2, etc. are the individual losses as a percentage of input power. Although all dissipative elements in the circuit produce losses, two main sources usually account for most of the losses: VIN quiescent current and I2R losses. The VIN quiescent current loss dominates the efficiency loss at very low load currents whereas the IR loss dominates the efficiency loss at medium to high load currents. In a typical efficiency plot, the efficiency curve at very low load currents can be misleading since the actual power lost is of no consequence.


1. The VIN quiescent current is due to two components: the DC bias current as given in the electrical characteristics and the internal main switch and synchronous switch gate charge currents. The gate charge current results from switching the gate capacitance of the internal power MOSFET switches. Each time the gate is


switched from high to low to high again, a packet of charge $\triangle Q$ moves from VIN to ground. The resulting $\triangle Q/\triangle t$ is the current out of VIN that is typically larger than the DC bias current. In continuous mode, $I_{GATECHG} = f(Q_T + Q_B)$ where Q_T and Q_B are the gate charges of the internal top and bottom switches. Both the DC bias and gate charge losses are proportional to VIN and thus their effects will be more pronounced at higher supply voltages.


2. l₂R losses are calculated from the resistances of the internal switches, Rsw and external inductor RL. In continuous mode the average output current flowing through inductor L is "chopped" between the main switch and the synchronous switch. Thus, the series resistance looking into the SW pin is a function of both top and bottom MOSFET RDS(ON) and the duty cycle (DC) as follows: Rsw = RDS(ON)TOP x DC + RDS(ON)BOT X (1-DC) The RDS(ON) for both the top and bottom MOSFETs can be obtained from the Typical Performance Characteristics curves. Thus, to obtain I2R losses, simply add Rsw to RL and multiply the result by the square of the average output current. Other losses including CIN and COUT ESR dissipative losses and inductor core losses generally account for less than 2% of the total loss.

Packaging Information

DFN3*3-10L Package Outline Dimension

Symbol	Dimensions In Millimeters		Dimensions In Inches		
Cymbol	Min	Max	Min	Max	
А	0.700/0.800	0.800/0.900	0.028/0.031	0.031/0.035	
A1	0.000	0.050	0.000	0.002	
A2	0.153	0.253	0.006	0.010	
D	2.900	3.100	0.114	0.122	
Е	2.900	3.100	0.114	0.122	
D1	1.600	1.800	0.063	0.071	
E1	2.300	2.500	0.091	0.098	
k	0.200MIN		0.008N	ЛIN	
b	0.200	0.300	0.008	0.012	
е	0.500TYP		0.020TYP		
L	0.300	0.500	0.012	0.020	