概述

JTM5423内置高精度电压检测电路和延迟电路, 是用于锂离子可充电电池/锂聚合物可充电电池的保护 IC。

本 IC 最适合于 2 节串联用锂离子/锂聚合物可充电电池组的过充电、过放电、充电过流和放电过流的保护。

特点

- 耐高压器件:绝对最大额定值30V
- 过充电检测电压 4.30±0.025V
- 放电过流1检测电压 0.20±0.02V
- 3段放电过流检测 (放电过流1、放电过流2和负载 短路检测)
- 延迟电容内置,不需要外接电容
- 具有向0V电池的充电功能
- 低消耗电流:工作时 典型值: 7μA休眠时 最大值: 0.1μA
- 封装形式: SOT-23-6

应用

- 锂离子可充电电池组
- 锂聚合物可充电电池组

图 1. 封装形式

管脚描述

Package: SOT-23-6

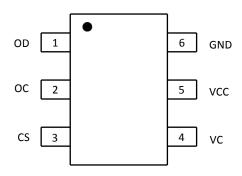


图 2. 管脚排布

编号	名称	功能
1	OD	放电控制用 FET 门极连接端子
2	OC	充电控制用 FET 门极连接端子
3	CS	CS-GND 间的电压检测端子(过充电检测端子)
4	VC	电池 1 的负电压、电池 2 的正电压连接端子
5	VCC	正电源输入端子、电池 1 的正电压连接端子
6	GND	负电源输入端子、电池 2 的负电压连接端子

表 1. 管脚描述

产品系列

名称	封装	过充检测电压 [V∞](V)	过充释放电压 [V a](V)	过放检测电压 [V n.](V)	过放释放电压 [V to](V)	过流 1 检测电 压[Voc1](mV)	0V 充电 功能	过放 恢复
JTM5423	SOT-23-6	4.300±0.025	4.100±0.05	2.9±0.1	3.0±0.1	200±20	Yes	Yes

功能框图

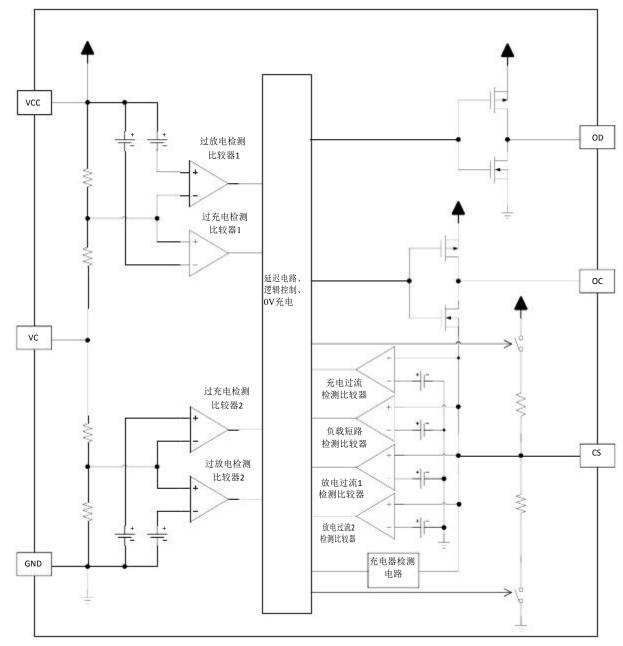
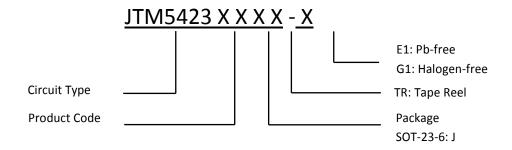



图 3. 功能框图

订购信息

封柒	封装 温度 产品编号		编号	标识	标识编号	
习入	um/X	无铅	无卤	无卤	无卤	包装形式
SOT-23-6	-40℃~85℃	AAJTR-E1	AJTR-G1	AA	AAG	编带

极限参数(注意:应用不要超过最大值,以防止损坏。长时间工作在最大值的情况下可能影响器件的可靠性)

参 数	符号	适用端子	参数值	单 位
VCC-GND 间输入电压	$V_{\rm cc}$	VCC	GND-0.3~GND+1	V
VC 输入端子电压	$V_{\rm vc}$	VC	GND-0.3~Vcc+0.3	V
CS 输入端子电压	V_{cs}	CS	V cc-28~V cc+0.3	V
OD 输出端子电压	V _{od}	OD	GND-0.3~V cc+0.3	V
OC 输出端子电压	V_{oc}	OC	V cs-0.3~V cc+0.3	V
ESD, HBM model per Mil-Std-883, Method 3015	HBM	-	2000	V
ESD, MM model per JEDEC EIA/JESD22-A115	MM	-	200	V
Latch-up test per JEDEC 78	-	-	200	mA
容许功耗	P_{D}	-	245	mW
工作环境温度	Тор	-	-40~85	$^{\circ}$
保存温度	T _{ST}	-	-40~125	$^{\circ}$

表 2. 极限参数

推荐工作条件

参数	符号	最小值	最大值	单位
输入 VCC 到 VC 间电压	V1	2.5	4.5	V
输入 VC 到 GND 间电压	V2	2.5	4.5	V
工作温度	Тор	0	65	$^{\circ}\!\mathbb{C}$

表 3. 推荐工作条件

电气特性(除特殊注明外: Ta=25℃, V1=V2=3.5V)

电气付压(陈符》在明介:		1 = V 2 = 3.3 V)		1		•
参数	符号	测试条件	最小值	典型值	最大值	单位
		检测电压				
过充电检测电压	$V_{\scriptscriptstyle{\text{CU1,2}}}$	_	4.275	4.300	4.325	V
过充电解除电压	$V_{\scriptscriptstyle{\mathrm{CL1,2}}}$	_	4.05	4.10	4.15	V
过放电检测电压	$V_{\scriptscriptstyle DL1,2}$	_	2.80	2.90	3.00	V
过放电解除电压	$V_{\scriptscriptstyle \mathrm{DU1,2}}$	_	2.90	3.00	3.10	V
放电过流1检测电压	V_{oc_1}	_	0.18	0.20	0.22	V
放电过流2检测电压	V_{oc_2}	_	0.30	0.38	0.46	V
负载短路检测电压	$V_{\scriptscriptstyle SIP}$	_	0.8	1.0	1.2	V
充电过流检测电压	$V_{\rm coc}$	_	-0.25	-0.20	-0.15	V
充电器检测电压	$V_{\scriptscriptstyle \mathrm{CHG}}$	_	-0.25	-0.20	-0.15	V
		延迟时间				
过充电检测延迟时间	t _{cu}	V1=3.5V,V2=3.5V~4.5V	0.9	1.3	1.6	S
过放电检测延迟时间	t _{DL}	V1=3.5V,V2=3.5V~2.5V	115	160	200	ms
充电过流检测延迟时间	t_{coc}	V cs=0V~0.25V	7	10	13	ms
放电过流 1 检测延迟时间	t _{oc1}	V cs=0V~0.25V	7	10	13	ms
放电过流 2 检测延迟时间	t _{oc2}	V cs=0V~0.6V	3	5	7	ms
负载短路检测延迟时间	$t_{\scriptscriptstyle \mathrm{SIP}}$	FET 门极容量=2000pF	220	300	380	us
		向 0 V 电池充电功能				
向 0 V 电池充电开始充电 器电压	$V_{ m ocha}$	向 0 V 电池充电功能	_	_	1.2	V
内部电阻				l		
CS-VCC 间电阻	Rcsc	V1=V2=1.5V,Vcs=0V	100	300	900	kΩ
CS-GND 间电阻	Rcsd	V1=V2=3.5V,Vcs=1.0V	5	10	20	kΩ
		输入电压		•	•	
VCC-GND 间工作电压	$V_{\scriptscriptstyle DSOP}$	内部电路工作电压	1.5	_	10	V
VCC-CS 间工作电压	$V_{\scriptscriptstyle DMOP}$	内部电路工作电压	1.5	_	28	V
		输入电流		•	•	
工作时消耗电流	IOPE	V1=V2=3.5V,V cs=0V	_	7	12	uA
休眠时消耗电流	$I_{\scriptscriptstyle PD}$	V1=V2=1.5V,V cs=3V	_	_	0.1	uA
VC 端子电流	$I_{\rm vc}$	V1=V2=3.5V,V cs=0V	_	_	0.1	uA
		输出电阻			•	
OC "H"电阻	$R_{{\rm OC(H)}}$	Voc=VCC-0.5V	2	5	10	kΩ
OC "L"电阻	$R_{{\rm OC}(L)}$	V oc=V cs+0.5V	2	4.5	8	ΜΩ
OD "H"电阻	$R_{\mathrm{OD(H)}}$	V _{oD} =VCC-0.5V	2	5	10	kΩ
OD "L"电阻	$R_{\mathrm{OD(L)}}$	V _{od} =GND+0.5V	2	5	10	kΩ

表 4. 电气特性

功能说明

通常状态

通过监测两节电池的电池电压以及 CS-GND 端子间的电压差来控制对电池的充电和放电。

两节电池的电压均在过放电检测电压Voll以上且在过充电检测电压Voll以下,以及CS端子电压在充电器检测电压Voll以上且在过流 1 检测电压Voll以下的情况下,充电控制用FET与放电控制用FET均导通,可自由地进行充放电,这种状态称为通常状态。

注意: 在初次连接电池时,有可能存在不能放电 电压V_{CHC},则当电池电压高于过放电解的情况,此时,短接 CS 端子和 GND 端子,或者连接充 除过放电状态,恢复至正常工作状态。电器就能恢复到通常的状态。

过充电状态

通常状态的电池在充电过程中,任意一节电池电压超过过充电检测电压Vcu,且这种状态保持在过充电检测延迟时间tcu以上的情况下, 关闭充电控制用FET而停止充电,这种状态称为过充电状态。

过充电状态的解除,分为2种情况:

- (1) 断开充电器,由于自放电使两节电池的电压均下降到过充电解除电压 V_{ca} 以下时,打开充电控制用FET恢复到通常状态;
- (2)断开充电器,连接负载放电,当两节电池的电压均下降到过充电检测电压 \mathbf{V}_{cus} 以下时,打开充电控制用FET恢复到通常状态。

注意: 进入过充电状态的电池,如果仍然连接着充电器,即使两节电池的电压都低于V сь,过充状态也不能解除。

过放电状态、休眠状态

通常状态的电池在放电过程中,任意一节电池电压低于过放电检测电压V_{DLa},且保持这个状态在过放电检测延迟时间t_{DL}以上的情况下, 关闭放电控制用FET而停止放电,这种状态称为过放电状态。

当关闭放电控制用FET后, CS端子由IC内部电阻上

拉至 V_{cc} ,使芯片消耗电流减少至休眠时的消耗电流 I_{PD} ,这种状态称为休眠状态。

过放状态的解除分为 2 种情况:

- (1)连接充电器,若CS端子电压低于充电器检测电压V_{CHG},则当电池电压均高于过放电检测电压V_{DL}时,解除过放电状态,恢复至正常工作状态,这种工作称为充电器检测。
- (2)连接充电器,若CS端子电压高于充电器检测电压V_{CHG},则当电池电压高于过放电解除电压V_{DUn}时,解除过放电状态,恢复至正常工作状态。

放电过流状态

正常工作状态下的电池, 通过采样 CS 端子电压持续监测放电电流。

若CS端子电压高于放电过流检测电压V c 。且持续时间超过放电过流检测延迟时间t c ,则 关断放电控制用FET,断开放电回路停止放电。这种状态称为放电过流状态。

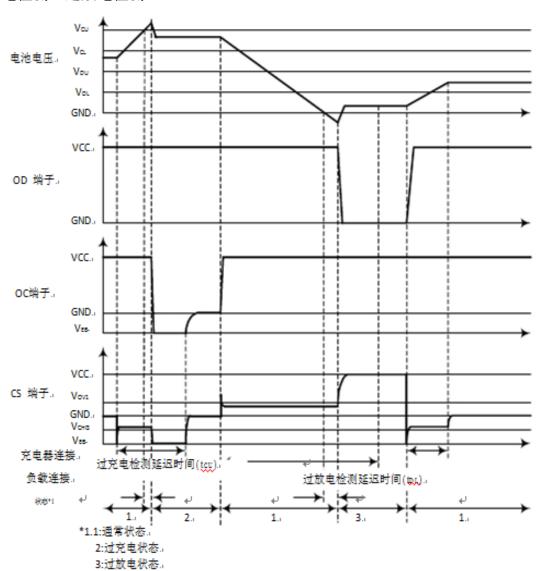
若CS端电压高于短路保护检测电压V_{sir}且持续时间超过放电过流检测延迟时间t_{sir},则 关断放电控制用FET,断开放电回路停止放电,这种状态称为短路保护状态。

放电过流状态下,CS端子由IC内部电阻下拉到GND,但是连接负载期间,CS电压取决于R_{csc}与R_{loan}(负载)对VCC的分压。负载移除后CS端子电压复位至GND,放电过流状态解除。

充电过流状态

正常工作状态下的电池,在充电过程中,如果CS 端子电压低于充电过流检测电压 V_{coc} ,且持续时间超过充电过流保护检测延迟时间 t_{coc} ,则 关断充电控制用FET,断开充电回路停止充电。这种状态称为充电过流状态。

移除充电器,使CS电压高于Vcc,芯片将从充电过


流状态恢复至正常状态。

向0 V电池充电功能

被连接的电池电压因自身放电,在变为 0V的状态下仍可以进行充电的功能。在EB+端子和EB-端子间连接大于V。cna的充电器时,充电控制用的门极电压固定为

VCC电压。借助于充电器电压,当充电控制用FET的门极和源极间电压达到翻转电压以上时,充电控制用FET将被导通而开始充电。此时,放电控制用FET被截止,充电电流通过放电控制用FET寄生二极管流动。在电池电压变为过放电解除电压Voa以上时恢复到通常状态。

工作时序图 过充电检测、过放电检测

放电过流/充电过流检测

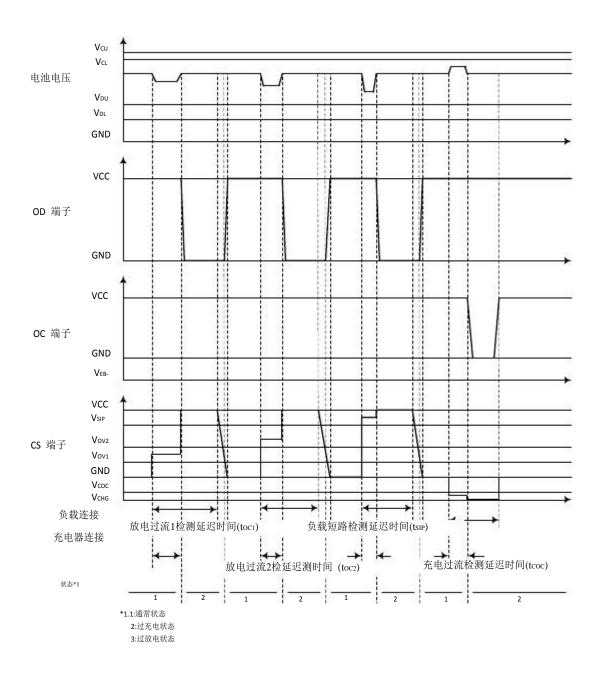


图 5. 放电过流/充电过流检测

充电器检测

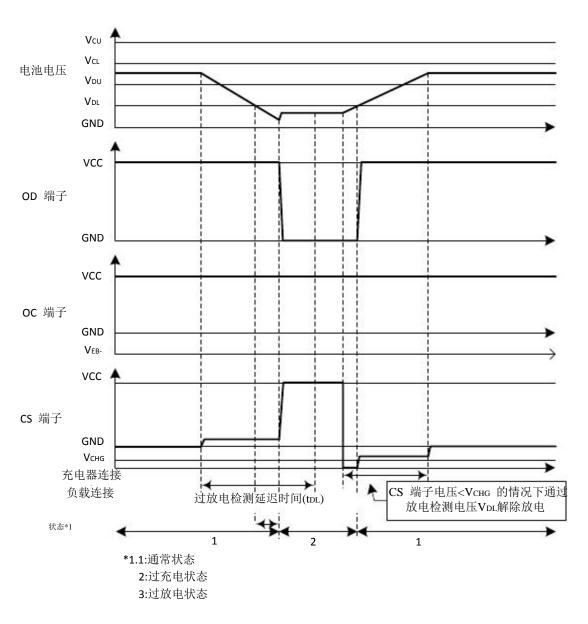


图 6. 充电器检测

典型应用图

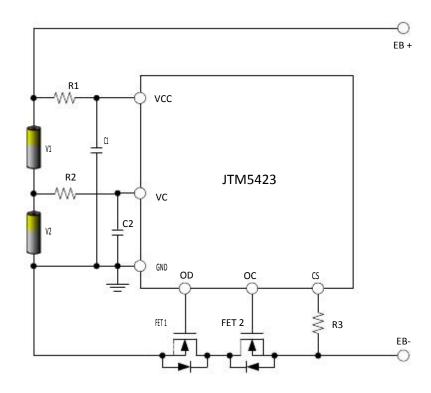
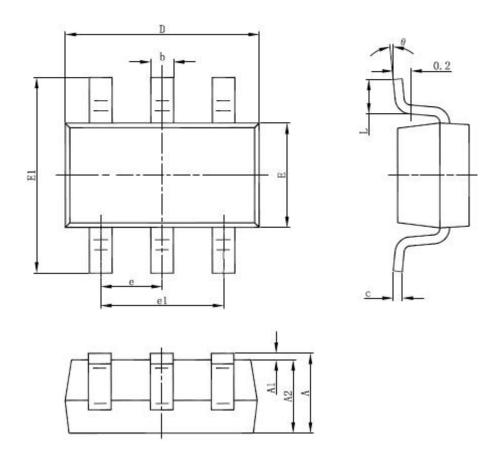


图 7. 典型应用图


外围元器件参数

记号	元器件	目的	最小值	典型值	最大值
FET1	N 沟道	充电控制	-	-	-
FET2	N 沟道	放电控制	-	-	-
R1	电阻	ESD 对策	300Ω	470Ω	1kΩ
C1	电容	电源变动对策	0.022uF	0.1uF	1uF
R2	电阻	ESD 对策	300Ω	470Ω	1kΩ
C2	电容	电源变动对策	0.022uF	0.1uF	1uF
R3	电阻	充电器反向连接对策	300Ω	2kΩ	4kΩ

表 5. 外围元器件参数

双节锂电池保护 IC JTM5423

封装尺寸 SOT-23-6

Symbol	Dimensions In I	Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
Е	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
e	0.950(BSC)		0.037(BSC)		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0 °	8°	0 °	8°	