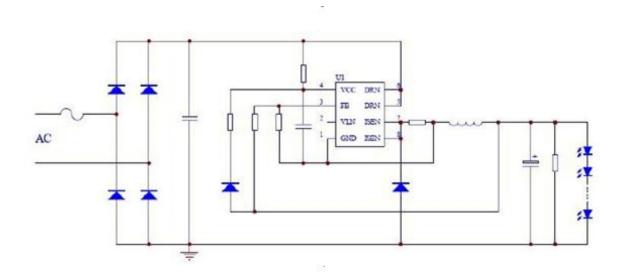
概述:

JTMS9922L/JTMS9923L是一款高效率支持可控硅调光的LED驱动芯片。芯片工作在电感电流临界连续模式,适用于北美地区可控硅调光LED照明应用。

JTMS9922L/JTMS9923L芯片内部集成300V功率MOSFET,芯片的工作电流极低,只需要极少的外围元件,即可实现优异的恒流特性,极大的节约了系统成本和体积。

JTMS9922L/JTMS9923L具有多重保护功能,包括LED开路保护、LED短路保护、ISEN电阻短路保护, 欠压保护, 芯片温度过热调节等。


JTMS9922L/JTMS9923L采用SOP-8封装。

特性:

- 支持可控硅调光
- · 内部集成300V功率管
- 电感电流临界连续模式
- 芯片超低工作电流
- ±5% LED输出电流精度
- LED开路保护

- · LED短路保护
- · ISEN电阻短路保护
- 芯片供电欠压保护
- · 过热调节功能
- · 采用SOP-8封装

典型应用图

JTMS9922L/JTMS9923L

订购信息

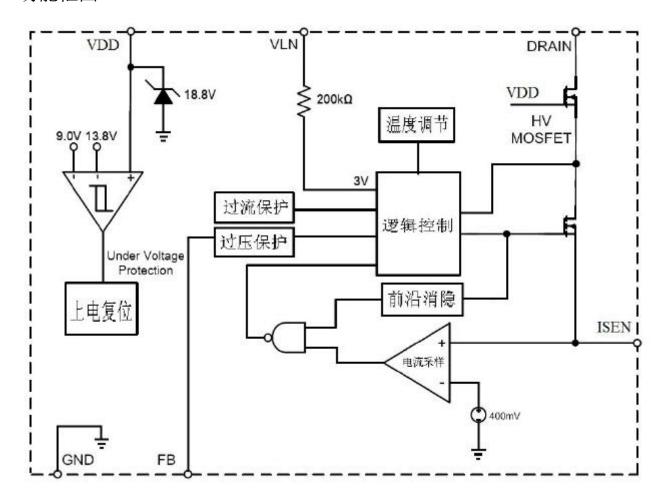
定购型号	封装	包装形式	打印
JTMS992L	SOP-8	编带 3,000pcs/盘	SI 9922L YMXXXX
JTMS993L	SOP-8	编带 3,000pcs/盘	SI 9923L YMXXXX

引脚图

引脚说明:

引脚号	符号	功能
1	GND	芯片地
2	VLN	线电压检测输入端
3	FB	过压保护信号采样端
4	VCC	芯片电源
5、6	DRAIN	内部高压功率管漏极
7、8	ISEN	电流采样端,采样电阻接在 ISEN 和 GND 端之间

极限参数


项目	符号	参数范围	单位
漏极电压	Vdrn	-0.3~300	V
电流采样端电压	Visen	-0.3~6	V
电压检测输入端电压	VVLN	-0.3~6	V
过零检测端电压	VfB	-0.3~6	V
最大工作电流	IDDMAX	10	mA
最大耗散功率(Ta=25 C)	P _{tot}	0.45	W
热阻结-环境	Rthj-a	145	°C/W
工作结温范围	TJ	-40~150	$^{\circ}$
存储温度范围	Tstg	-55~150	$^{\circ}$
ESD		2,000	V

注:超过极限参数范围,本产品的性能及可靠性将得不到保障,实际使用中不得超过极限参数范围。

电气特性

无特别说明情况下V _{DD} =15V, T _A =25 ℃							
符号	크	描述	条件 最小值 典型值		最大值	单位	
VDD 启	动电压	$V_{ ext{DD_ON}}$	VDD 上升		13.8		V
VDD欠压化	保护阈值	$V_{ ext{DD_UVLO}}$	VDD 下降		9		V
VDD 启	动电流	Ist	VDD= V _{DD_ON} -1V		110	180	uA
VDD ⊥	作电流	\mathbf{I}_{OP}	F=70KHZ		100	180	uA
VDD 钳	位电压	$V_{\text{DD_CLAMP}}$	$I_{DD} = 1mA$		18.8		V
电流检测	削阈值	$V_{\text{CS_TH}}$		388	400	412	mV
短路时电流	检测阈值	$V_{\text{CS_SHORT}}$	输出短路		200		mV
前沿消隙	急时间	$T_{ ext{LEB}}$			350		ns
芯片关め	听延迟	$T_{ ext{DELAY}}$			200		ns
线电压前/	馈阈值	$V_{\scriptscriptstyle VLN_TH}$			3		V
线电压前馈	输入阻抗	$R_{\scriptscriptstyle VLN}$			200		kΩ
最小退磁	滋时间	$T_{ ext{OFF_MIN}}$			2.6		us
最大退磁	滋时间	$T_{\text{OFF_MAX}}$			240		us
最大开通	通时间	$T_{\text{ON_MAX}}$			10		us
FB 过压货	录护阈值	$V_{\text{FB_OVP}}$			1		V
SIC9922L	MOSFET	$R_{ ext{DS_ON}}$	$V_{cs} = 15V/I_{Ds} = 0.5A$	-	3.5	4.0	Ω
SIC9923L	导通电阻	~			2.0	2.5	
功率管击	穿电压	$BV_{ ext{DSS}}$	V _{GS} =0V/I _{DS} =250uA	300			V
功率管源	扇电 流	Idss	$V_{\text{GS}}=0\text{V}/V_{\text{DS}}=300\text{V}$			1	uA
过温调节	5温度	T_{REG}			150		$^{\circ}$

功能框图

应用说明

功能说明:

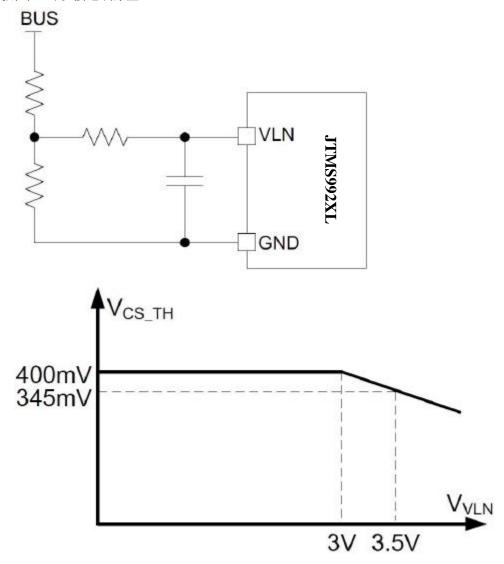
JTMS9922L/JTMS9923L是一款高效率支持可控硅调光的LED驱动芯片,适用于北美地区可控硅调光LED照明应用。芯片内部集成300V功率开关,只需要极少的外围组件就可以达到优异的恒流特性。极大的节约了系统成本和体积。

启动:

系统上电后,母线电压通过启动电阻对VDD电容充电,当VDD电压达到芯片开启阈值时,芯片内部控制电路开始工作。JTMS9922L/JTMS9923L内置18.8V稳压管,用于钳位VDD电压。当输出电压建立之后,VDD由输出电压供电。

恒流控制:

芯片逐周期检测电感的峰值电流,ISEN端连接到内部的峰值电流比较器的输入端,与内部400mV 阈值电压进行比较,当ISEN端电压达到内部检测阈值时,功率管关断。电感峰值电流的计算公式为:


$$I_{PK} = \frac{400}{R_{\rm ISEN}} (\text{mA}) ;$$

其中, RISEN为电流采样电阻阻值。

ISEN比较器的输出还包括一个350nS 前沿消隐时间。

VLN脚起到检测调光器相角调整输出电流的作用。

VLN脚的应用示意图如图4,当VLN脚电压高于3V时,CS内部400mV检测阈值开始线性下降,如图5所示。当VLN脚不使用时,可以接地或浮空。

储能电感:

JTMS9922L/JTMS9923L工作在电感电流临界模式,当功率管导通时,流过储能电感的电流从零开始上升,导通时间为:

$$t_{ON} = \frac{L \times I_{PK}}{V_{IN} - V_{LED}};$$

其中,

L是电感量;

IPK是电感电流的峰值;

V_{IN}是经整流后的母线电压:

芯片内部设定的最大导通时间为10us。

当功率管关断时,流过储能电感的电流从峰值开始往下降,当电感电流下降到零时,芯片内部逻辑再次将功率管导通。功率管的关断时间为:

$$t_{OFF} = \frac{L \times I_{PK}}{V_{IFD}}$$

储能电感的计算公式为

$$L = \frac{V_{LED} \times (V_{IN} - V_{LED})}{f \times I_{PK} \times V_{IN}}$$

其中, f是系统最大工作频率。

JTMS9922L/JTMS9923L的系统工作频率和输入电压呈正相关关系,设置JTMS9922L/JTMS9923L系统工作频率时,选择在输入电压最低时设置系统的最低工作频率,而当输入电压最高时,系统的工作频率也最高。

过压保护电阻设置:

FB引脚用来探测输出过压保护(OVP),阈值为1V。

FB的上下分压电阻比例可以设置为:

$$\frac{R_{FBL}}{R_{FBL} + R_{FBH}} = \frac{1}{V_{OVP}}$$

其中,

RFBL是反馈网络的下分压电阻;

Rен是反馈网络的上分压电阻;

Vove是输出电压过压保护设定点:

为了提高系统频率,FB下分压电阻可以设置在5KΩ左右。

保护功能:

JTMS9922L/JTMS9923L内置多种保护功能,包括LED开路/短路保护,CS电阻短路保护,VDD欠压保护,芯片温度过热调节等。

当输出LED开路时,随着输出电压的上升,当FB引脚检测到大于1V的电压时,系统会触发过压保护逻辑并停止开关工作。

当LED短路时,系统工作在4KHz低频,ISEN关断阈值降低到200mV,所以功耗很低。当有些异常的情况发生时,比如ISEN采样电阻短路或者变压器饱和,芯片内部的快速探测电路会触发保护逻辑,系统马上停止开关工作。

系统进入保护状态后,VDD电压开始下降;当VDD到达欠压保护阈值时,系统将重启。同时系统不断的检测负载状态,如果故障解除,系统会重新开始正常工作。

过温调节功能:

JTMS9922L/JTMS9923L 具有过热调节功能,在驱动电源过热时逐渐减小输出电流,从而控制输出功率和温升,使电源温度保持在设定值,以提高系统的可靠性。芯片内部设定过热调节温度为 150℃。

PCB 设计:

在设计JTMS9922L/JTMS9923L PCB时,需要遵循以下指南:

旁路电容

VDD的旁路电容需要紧靠芯片VDD和GND引脚。

过压保护电阻

过压保护电阻需要尽量靠近芯片FB引脚。且节点要远离功率电感的动点。

VLN引脚

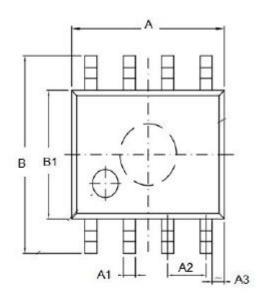
VLN分压电阻和滤波电容需要尽量靠近芯片VLN引脚。且VLN节点要远离高压节点和噪声源。

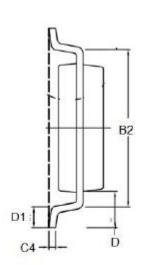
抽线

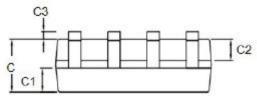
电流采样电阻的功率地线尽可能粗,且要离芯片的 GND 脚尽量近。另外,FB 脚的电阻到芯片 GND 脚的连线应尽可能短。

功率环路的面积

减小功率环路的面积,如功率管、母线电容和续流二极管的环路面积,以减小EMI辐射。


DRAIN引脚


增加DRAIN引脚的铺铜面积以提高芯片散热。


SOP8 封装机械尺寸 SOP8 MECHANICAL DATA

单位:毫米/UNIT: mm

符号	最小值	典型值	最大值	符号	最小值	典型值	最大值
SYMBOL	min	nom	max	SYMBOL	min	nom	max
Α	4.80		5.00	С	1.30		1.50
A1	0.37		0.47	C1	0.55		0.75
A2		1.27 TYP		C2	0.55		0.65
А3		0.41 TYP		C3	0.05		0.20
В	5.80		6.20	C4	0.19	0.20TYP	0.23
B1	3.80		4.00	D		1.05TYP	
B2		5.0TYP		D1	0.40		0.62

