产品信息查询
产品 技术 新闻 资料
首页 > 产品中心 > 电源管理 > DC升压型转换器 > DC升压转换 >2.6V至6.5V输入电源VGON和VGOFF的线性调节器控制器CXSU63137电流模式升压调节器大电流运算放大器
2.6V至6.5V输入电源VGON和VGOFF的线性调节器控制器CXSU63137电流模式升压调节器大电流运算放大器
13

CXSU63137集成了一个高性能升压转换器、两个线性调节器控制器、一个高压开关和一个(CXSU63137)、三个(CXSU63137)或五个(CXSU63137)大电流运算放大器,用于TFT-LCD应用。主升压调节器是电流模式、固定频率的PWM开关调节器。1.2兆赫的开关频率允许使用低剖面感应器和陶瓷电容器,以最小化液晶面板设计的厚度

2.6V至6.5V输入电源VGON和VGOFF的线性调节器控制器CXSU63137电流模式升压调节器大电流运算放大器
产品手册
样品申请

样品申请

产品简介

目录dHp嘉泰姆

1.产品概述                       2.产品特点dHp嘉泰姆
3.应用范围                       4.下载产品资料PDF文档 dHp嘉泰姆
5.产品封装图                     6.电路原理图                   dHp嘉泰姆
7.功能概述                        8.相关产品dHp嘉泰姆

一,产品概述(General Description)         dHp嘉泰姆


           The CXSU63137 integrates with a high-performance step-up converter, two linear-regulator controllers, a high voltage switch and one (CXSU63137), three (CXSU63137) or five (CXSU63137) high current operational amplifiers for TFT-LCD applications.The main step-up regulator is a current-mode, fixed-fre-quency PWM switching regulator. The 1.2MHz switching frequency allows the usage of low-profile inductors and ceramic capacitors to minimize the thickness of LCD panel designs.dHp嘉泰姆
      The linear-regulator controllers used external transistors provide regulated the gate-driver of TFT-LCD VGON and VGOFF supplies.dHp嘉泰姆
The amplifiers are ideal for VCOM and VGAMMA applications, withdHp嘉泰姆
150m A peak output current drive, 10MHz bandwidth, and 13V/μs slewdHp嘉泰姆
rate. All inputs and outputs are rail-to-rail.dHp嘉泰姆
     The CXSU63137/1/2 is available in a tiny 5mm x 5mm 32-pin QFN package (TQFN5x5-32).dHp嘉泰姆
二.产品特点(Features)dHp嘉泰姆


· 2.6V to 6.5V Input Supply Range dHp嘉泰姆

· Current-Mode Step-Up Regulator dHp嘉泰姆

 - Fast Transient Response dHp嘉泰姆

 - 1.2MHz Fixed Operating Frequency dHp嘉泰姆

· ±1.5% High-Accuracy Output Voltage dHp嘉泰姆

· 3A, 20V, 0.25W Internal N-Channel MOSFET dHp嘉泰姆

· High Efficiency dHp嘉泰姆

· Low Quiescent Current (0.6mA Typical) dHp嘉泰姆

· Linear-Regulator Controllers for VGON and VGOFF dHp嘉泰姆

· High-performance Operational Amplifiers dHp嘉泰姆

 - ±150mA Output Short-Circuit CurrentdHp嘉泰姆

 - 13V/ms Slew Rate - 10MHz, -3dB Bandwidth dHp嘉泰姆

 - Rail-to-Rail Inputs/Outputs dHp嘉泰姆

· Fault-Delay Timer and Fault Latch for All Regulator Outputs dHp嘉泰姆

· Over-Temperature Protection dHp嘉泰姆

· Available in Compact 32-pin 5mmx5mm Thin QFN Package (TQFN5x5-32) dHp嘉泰姆

· Lead Free Available (RoHS Compliant)dHp嘉泰姆

三,应用范围 (Applications)dHp嘉泰姆


    TFT LCD Displays for MonitorsdHp嘉泰姆
   TFT LCD Displays for Notebook ComputersdHp嘉泰姆
   Automotive DisplaysdHp嘉泰姆
四.下载产品资料PDF文档 dHp嘉泰姆


需要详细的PDF规格书请扫一扫微信联系我们,还可以获得免费样品以及技术支持dHp嘉泰姆

 QQ截图20160419174301.jpgdHp嘉泰姆

五,产品封装图 (Package)dHp嘉泰姆


blob.pngdHp嘉泰姆
blob.pngPin Function DescriptiondHp嘉泰姆

PindHp嘉泰姆

NamedHp嘉泰姆

Function DescriptiondHp嘉泰姆

CXSU63137dHp嘉泰姆

CXSU63137-1dHp嘉泰姆

CXSU63137-2dHp嘉泰姆

1dHp嘉泰姆

SRCdHp嘉泰姆

SRCdHp嘉泰姆

SRCdHp嘉泰姆

Switch Input. Source of the internal high-voltage P-channel MOSFET. BypassdHp嘉泰姆
SRC to PGND with a minimum of 0.1μF capacitor closed to the pins.dHp嘉泰姆

2dHp嘉泰姆

REFdHp嘉泰姆

REFdHp嘉泰姆

REFdHp嘉泰姆

Reference voltage output. Bypass REF to AGND with a minimum ofdHp嘉泰姆
0.22μFcapacitor closed to the pins.dHp嘉泰姆

3dHp嘉泰姆

AGNDdHp嘉泰姆

AGNDdHp嘉泰姆

AGNDdHp嘉泰姆

Analog Ground for Step-Up Regulator and Linear Regulators. Connect todHp嘉泰姆
power ground (PGND) underneath the IC.dHp嘉泰姆

4dHp嘉泰姆

PGNDdHp嘉泰姆

PGNDdHp嘉泰姆

PGNDdHp嘉泰姆

Power Ground for Step-Up Regulator. PGND is the source of the main step-updHp嘉泰姆
n-channel power MOSFET. Connect PGND to the ground terminals of outputdHp嘉泰姆
capacitors through a short, wide PC board trace. Connect to analog grounddHp嘉泰姆
(AGND) underneath the IC.dHp嘉泰姆

5dHp嘉泰姆

OUT1dHp嘉泰姆

OUT1dHp嘉泰姆

OUT1dHp嘉泰姆

Output of Operational-Amplifier 1dHp嘉泰姆

6dHp嘉泰姆

NEG1dHp嘉泰姆

NEG1dHp嘉泰姆

NEG1dHp嘉泰姆

Inverting Input of Operational-Amplifier 1dHp嘉泰姆

7dHp嘉泰姆

POS1dHp嘉泰姆

POS1dHp嘉泰姆

POS1dHp嘉泰姆

Non-inverting Input of Operational-Amplifier 1dHp嘉泰姆

8dHp嘉泰姆

NCdHp嘉泰姆

OUT2dHp嘉泰姆

OUT2dHp嘉泰姆

Output of Operational-Amplifier 2 of CXSU63137/CXSU63137. No internaldHp嘉泰姆
connected of CXSU63137.dHp嘉泰姆

9dHp嘉泰姆

NCdHp嘉泰姆

NEG2dHp嘉泰姆

NEG2dHp嘉泰姆

Inverting Input of Operational-Amplifier 2 of CXSU63137/CXSU63137. No internaldHp嘉泰姆
connected of CXSU63137.dHp嘉泰姆

10dHp嘉泰姆

ICdHp嘉泰姆

POS2dHp嘉泰姆

POS2dHp嘉泰姆

Non-inverting Input of Operational-Amplifier 2 of CXSU63137/CXSU63137. InternaldHp嘉泰姆
connected to GND of CXSU63137dHp嘉泰姆

11dHp嘉泰姆

BGNDdHp嘉泰姆

BGNDdHp嘉泰姆

BGNDdHp嘉泰姆

Analog Ground for Operational Amplifiers. Connect to power ground (PGND)dHp嘉泰姆
underneath the IC.dHp嘉泰姆

12dHp嘉泰姆

NCdHp嘉泰姆

NCdHp嘉泰姆

POS3dHp嘉泰姆

Non-inverting Input of Operational-Amplifier 3 of CXSU63137. No internaldHp嘉泰姆
connected of CXSU63137/CXSU63137.dHp嘉泰姆

13dHp嘉泰姆

NCdHp嘉泰姆

NCdHp嘉泰姆

OUT3dHp嘉泰姆

Output of Operational-Amplifier 3 of CXSU63137. No internal connected ofCXSU63137/CXSU63137.dHp嘉泰姆

14dHp嘉泰姆

SUPdHp嘉泰姆

SUPdHp嘉泰姆

SUPdHp嘉泰姆

Power Input of Operational Amplifiers. Typically connected to VMAIN. BypassdHp嘉泰姆
SUP to BGND with a 0.1μF capacitor.dHp嘉泰姆

15dHp嘉泰姆

NCdHp嘉泰姆

POS3dHp嘉泰姆

POS4dHp嘉泰姆

Non-inverting Input of Operational-Amplifier 4 of CXSU63137. Non-invertingdHp嘉泰姆
Input of Operational-Amplifier 3 of CXSU63137. No internal connected ofCXSU63137.dHp嘉泰姆

16dHp嘉泰姆

NCdHp嘉泰姆

NEG3dHp嘉泰姆

NEG4dHp嘉泰姆

Inverting Input of Operational-Amplifier 4 of CXSU63137. Inverting Input ofdHp嘉泰姆
Operational-Amplifier 3 of CXSU63137. No internal connected of CXSU63137.dHp嘉泰姆

17dHp嘉泰姆

NCdHp嘉泰姆

OUT3dHp嘉泰姆

OUT4dHp嘉泰姆

Output of Operational-Amplifier 4 of CXSU63137. Output ofdHp嘉泰姆
Operational-Amplifier 3 of CXSU63137. No internal connected of CXSU63137.dHp嘉泰姆

18dHp嘉泰姆

ICdHp嘉泰姆

ICdHp嘉泰姆

POS5dHp嘉泰姆

Non-inverting Input of Operational-Amplifier 5 of CXSU63137. Internal connecteddHp嘉泰姆
to GND of CXSU63137/CXSU63137.dHp嘉泰姆

19dHp嘉泰姆

NCdHp嘉泰姆

NCdHp嘉泰姆

NEG5dHp嘉泰姆

Inverting Input of Operational-Amplifier 5 of CXSU63137. No internal connecteddHp嘉泰姆
of CXSU63137/CXSU63137.dHp嘉泰姆

20dHp嘉泰姆

NCdHp嘉泰姆

NCdHp嘉泰姆

OUT5dHp嘉泰姆

Output of Operational-Amplifier 5 of CXSU63137. No internal connected ofCXSU63137/CXSU63137.dHp嘉泰姆

21dHp嘉泰姆

LXdHp嘉泰姆

LXdHp嘉泰姆

LXdHp嘉泰姆

N-Channel Power MOSFET Drain and Switching Node. Connect the inductordHp嘉泰姆
and Schottky diode to LX and minimize the trace area for lowest EMI.dHp嘉泰姆

22dHp嘉泰姆

INdHp嘉泰姆

INdHp嘉泰姆

INdHp嘉泰姆

Supply Voltage Input. Bypass IN to AGND with a 0.1μF capacitor. IN can rangedHp嘉泰姆
from 2.6V to 6.5V.dHp嘉泰姆

23dHp嘉泰姆

FBdHp嘉泰姆

FBdHp嘉泰姆

FBdHp嘉泰姆

Step-Up Regulator Feedback Input. Connect a resistive voltage-divider fromdHp嘉泰姆
the output (VMAIN) to FB to analog ground (AGND). Place the divider withindHp嘉泰姆
5mm of FB.dHp嘉泰姆

24dHp嘉泰姆

COMPdHp嘉泰姆

COMPdHp嘉泰姆

COMPdHp嘉泰姆

Step-Up Regulator Error-Amplifier Compensation Point. Connect a series RCdHp嘉泰姆
from COMP to AGND.dHp嘉泰姆

PinFunction DescriptiondHp嘉泰姆

PindHp嘉泰姆

NamedHp嘉泰姆

Function DescriptiondHp嘉泰姆

CXSU63137dHp嘉泰姆

CXSU63137-1dHp嘉泰姆

CXSU63137-2dHp嘉泰姆

24dHp嘉泰姆

COMPdHp嘉泰姆

COMPdHp嘉泰姆

COMPdHp嘉泰姆

Step-Up Regulator Error-Amplifier Compensation Point. Connect a series RCdHp嘉泰姆
from COMP to AGND.dHp嘉泰姆

25dHp嘉泰姆

FBPdHp嘉泰姆

FBPdHp嘉泰姆

FBPdHp嘉泰姆

Gate-On Linear-Regulator Feedback Input. Connect FBP to the center of adHp嘉泰姆
resistive voltage-divider between the regulator output and AGND to set thedHp嘉泰姆
gate-on linear regulator output voltage. Place the resistive voltage-dividerdHp嘉泰姆
close to the pin.dHp嘉泰姆

26dHp嘉泰姆

DRVPdHp嘉泰姆

DRVPdHp嘉泰姆

DRVPdHp嘉泰姆

Gate-On Linear-Regulator Base Drive. Open drain of an internal n-channeldHp嘉泰姆
MOSFET. Connect DRVP to the base of an external PNP pass transistor.dHp嘉泰姆

27dHp嘉泰姆

FBNdHp嘉泰姆

FBNdHp嘉泰姆

FBNdHp嘉泰姆

Gate-Off Linear-Regulator Feedback Input. Connect FBN to the center of adHp嘉泰姆
resistive voltage-divider between the regulator output and REF to set thedHp嘉泰姆
gate-off linear regulator output voltage. Place the resistive voltage-dividerdHp嘉泰姆
close to the pin.dHp嘉泰姆

28dHp嘉泰姆

DRVNdHp嘉泰姆

DRVNdHp嘉泰姆

DRVNdHp嘉泰姆

Gate-Off Linear-Regulator Base Drive. Open drain of an internal p-channeldHp嘉泰姆
MOSFET. Connect DRVN to the base of an external NPN pass transistor.dHp嘉泰姆

29dHp嘉泰姆

DELdHp嘉泰姆

DELdHp嘉泰姆

DELdHp嘉泰姆

High-Voltage Switch Delay Input. Connect a capacitor from DEL to AGND todHp嘉泰姆
set the high-voltage switch startup delay.dHp嘉泰姆

30dHp嘉泰姆

CTLdHp嘉泰姆

CTLdHp嘉泰姆

CTLdHp嘉泰姆

High-Voltage Switch Control Input. When CTL is high, the high-voltage switchdHp嘉泰姆
between COM and SRC is on and the high-voltage switch between COM anddHp嘉泰姆
DRN is off. When CTL is low, the high-voltage switch between COM and SRCdHp嘉泰姆
is off and the high-voltage switch between COM and DRN is on. CTL isdHp嘉泰姆
inhibited by the undervoltage lockout and when the voltage on DEL is less thandHp嘉泰姆
1.25V.dHp嘉泰姆

31dHp嘉泰姆

DRNdHp嘉泰姆

DRNdHp嘉泰姆

DRNdHp嘉泰姆

Switch Input. Drain of the internal high-voltage back-to-back P-channeldHp嘉泰姆
MOSFETs connected to COM. Do not allows the voltage on DRN to exceeddHp嘉泰姆
VSRC.dHp嘉泰姆

32dHp嘉泰姆

COMdHp嘉泰姆

COMdHp嘉泰姆

COMdHp嘉泰姆

Internal High-Voltage MOSFET Switch Common Terminal. Do not allow thedHp嘉泰姆
voltage on COM to exceed VSRC.dHp嘉泰姆

六.电路原理图dHp嘉泰姆
七,功能概述dHp嘉泰姆
For all switching power supplies, the layout is an impor-tant step in the design; especially at high peak currents and switching frequencies. There are some general guidelines for layout:dHp嘉泰姆
1.Place the external power components (the input capacitors, output capacitors, boost inductor and output diodes, etc.) in close proximity to the device.Traces to these components should be kept as short and wide as possible to minimize parasitic inductance and resistance.dHp嘉泰姆
2.Place the REF and IN bypass capacitors close to the pins. The ground connection of the IN bypass capacitor should be connected directly to the AGND pin with a wide trace.dHp嘉泰姆
3.Create a power ground (PGND) and a signal ground island and connect at only one point. The power ground consisting of the input and output capacitor grounds, PGND pin, and any charge-pump components. Connect all of these together with short, wide traces or a small ground plane. Maxi-mizing the width of the power ground traces im-proves efficiency and reduces output voltage ripple and noise spikes. The analog ground plane (AGND) consisting of the AGND pin, all the feed-back-divider ground connections, the operational-amplifier divider ground connections, the COMP and DEL capacitor ground connections, and the device’s exposed backside pad. Connect the AGND and PGND islands by connecting the PGND pin directly to the exposed backside pad. Make no other connections between these separate ground planes.dHp嘉泰姆
4.The feedback network should sense the output volt-age directly from the point of load, and be as far away from LX node as possible.dHp嘉泰姆
5.The exposed die plate, underneath the package,should be soldered to an equivalent area of metal on the PCB. This contact area should have mul-tiple via connections to the back of the PCB as well as connections to intermediate PCB layers, if available, to maximize thermal dissipation away from the IC.dHp嘉泰姆
6.To minimize the thermal resistance of the package when soldered to a multi-layer PCB, the amount of copper track and ground plane area connected to the exposed die plate should be maximized and spread out as far as possible from the IC. The bot-tom and top PCB areas especially should be maxi-mized to allow thermal dissipation to the surround-ing air.dHp嘉泰姆
7.Minimize feedback input track lengths to avoid switching noise pick-updHp嘉泰姆
八,相关产品dHp嘉泰姆

Switching Regulator > Boost ConverterdHp嘉泰姆

 Part_No dHp嘉泰姆

PackagedHp嘉泰姆

Archi-tecture dHp嘉泰姆

Input dHp嘉泰姆

Voltage    dHp嘉泰姆

Max Adj.dHp嘉泰姆

Output dHp嘉泰姆

Voltage dHp嘉泰姆

Switch Current Limit (max) dHp嘉泰姆

Fixed dHp嘉泰姆

Output dHp嘉泰姆

Voltage  dHp嘉泰姆

Switching dHp嘉泰姆

Frequency dHp嘉泰姆

Internal Power   Switch dHp嘉泰姆

Sync. Rectifier dHp嘉泰姆

 

mindHp嘉泰姆

maxdHp嘉泰姆

mindHp嘉泰姆

maxdHp嘉泰姆

(A)dHp嘉泰姆

(V)dHp嘉泰姆

(kHz)dHp嘉泰姆

 

CXSU63133dHp嘉泰姆

SOT89dHp嘉泰姆

VM dHp嘉泰姆

0.9dHp嘉泰姆

5.5dHp嘉泰姆

2.5dHp嘉泰姆

5.5dHp嘉泰姆

0.5dHp嘉泰姆

1.8|2.6|2.8|3dHp嘉泰姆

|3.3|3.8|4.5|5dHp嘉泰姆

-dHp嘉泰姆

NodHp嘉泰姆

YesdHp嘉泰姆

CXSU63134dHp嘉泰姆

MSOP8|TSSOP8dHp嘉泰姆

|SOP8dHp嘉泰姆

VMdHp嘉泰姆

2.5dHp嘉泰姆

5.5dHp嘉泰姆

2.5dHp嘉泰姆

-dHp嘉泰姆

-dHp嘉泰姆

-dHp嘉泰姆

200 ~ 1000dHp嘉泰姆

NodHp嘉泰姆

NodHp嘉泰姆

CXSU63135dHp嘉泰姆

TSSOP8|SOP-8PdHp嘉泰姆

VMdHp嘉泰姆

1dHp嘉泰姆

5.5dHp嘉泰姆

2.5dHp嘉泰姆

5dHp嘉泰姆

1dHp嘉泰姆

2.5|3.3dHp嘉泰姆

300dHp嘉泰姆

YesdHp嘉泰姆

YesdHp嘉泰姆

CXSU63136dHp嘉泰姆

SOP8dHp嘉泰姆

CMdHp嘉泰姆

3dHp嘉泰姆

40dHp嘉泰姆

1.25dHp嘉泰姆

40dHp嘉泰姆

1.5dHp嘉泰姆

-dHp嘉泰姆

33 ~ 100dHp嘉泰姆

YesdHp嘉泰姆

NodHp嘉泰姆

CXSU63137dHp嘉泰姆

TQFN5x5-32dHp嘉泰姆

CMdHp嘉泰姆

2.5dHp嘉泰姆

6.5dHp嘉泰姆

2.5dHp嘉泰姆

18dHp嘉泰姆

3dHp嘉泰姆

NodHp嘉泰姆

1200dHp嘉泰姆

YesdHp嘉泰姆

NodHp嘉泰姆

CXSU63138dHp嘉泰姆

TSOT23-5dHp嘉泰姆

TDFN2x2-6dHp嘉泰姆

CMdHp嘉泰姆

2.5dHp嘉泰姆

6dHp嘉泰姆

2.5dHp嘉泰姆

20dHp嘉泰姆

2dHp嘉泰姆

-dHp嘉泰姆

1500dHp嘉泰姆

YesdHp嘉泰姆

NodHp嘉泰姆

CXSU63139dHp嘉泰姆

TQFN4x4-6dHp嘉泰姆

TDFN3x3-12dHp嘉泰姆

CMdHp嘉泰姆

1.8dHp嘉泰姆

5.5dHp嘉泰姆

2.7dHp嘉泰姆

5.5dHp嘉泰姆

5dHp嘉泰姆

-dHp嘉泰姆

1.2dHp嘉泰姆

YesdHp嘉泰姆

YesdHp嘉泰姆

CXSU63140dHp嘉泰姆

SOT23-5dHp嘉泰姆

CMdHp嘉泰姆

2.5dHp嘉泰姆

6dHp嘉泰姆

2.5dHp嘉泰姆

32dHp嘉泰姆

1dHp嘉泰姆

-dHp嘉泰姆

1000dHp嘉泰姆

YesdHp嘉泰姆

NodHp嘉泰姆

CXSU63141dHp嘉泰姆

TSOT-23-6 dHp嘉泰姆

TDFN2x2-8dHp嘉泰姆

CMdHp嘉泰姆

1.2dHp嘉泰姆

5.5dHp嘉泰姆

1.8dHp嘉泰姆

5.5dHp嘉泰姆

1.2dHp嘉泰姆

-dHp嘉泰姆

1.2dHp嘉泰姆

YesdHp嘉泰姆

YesdHp嘉泰姆

 dHp嘉泰姆

发表评论
    共有条评论
    用户名: 密码:
    验证码: 匿名发表

热门信息
  • 最新信息
    推荐信息
    相关文章
  • 外部输入参考电压升压型DC/DC控制器CXSU63151轻负载到
  • 脉冲宽度调制PWM降低了输出纹波CXSU6395E高效率峰值电
  • CXSD6225耐压高至42V输出电流1.5A的异步降压转换器12V
  • 【0.6A高压降压】CXSD6265 80V宽压DC-DC转换器|工业级
  • 【1A高压降压】CXSD6266 80V宽压DC-DC转换器|工业级电
  • 【80V高压降压】CXSD62557 DC-DC转换器|1A高效电源IC S
  • CXLC8993升压转换器两个电荷泵和用于TFT LCD的大电流
  • CXLC8992升压转换器正电荷泵和负电荷泵内置延时的逻辑
  • CXLC8988 CXLC8989高性能的升压调节器降压升压控制器
  • CXLC8984升压转换器两个电荷泵和一个用于TFT LCD的大
  • 推荐资讯
    智能电表驱动技术全景解析:从计量芯片到通信模块的完整指南
    智能电表驱动技术全景
    电子秤显示模块核心技术解析:从LCD驱动到智能接口的全方案指南
    电子秤显示模块核心技
    显示驱动电路深度解析:从基础原理到先进设计的完整指南  SEO关键词:
    显示驱动电路深度解析
    智能家电控制系统全面解析:从技术原理到未来趋势的深度指南
    智能家电控制系统全面
    串行通信接口终极指南:从基础原理到高速协议的全景解析
    串行通信接口终极指南
    家电显示控制系统全景解读:从UI设计到智能交互的技术演进
    家电显示控制系统全景
    辉度调节技术全面解析:从PWM调光到智能亮度控制的全景指南
    辉度调节技术全面解析
    串行接口终极指南:从UART到PCIe,详解串行通信原理与应用
    串行接口终极指南:从UA
    显示控制系统深度解析:从驱动原理到多屏交互的全景指南
    显示控制系统深度解析
    段码LED显示技术详解:原理、应用与选型指南
    段码LED显示技术详解:
    键盘扫描揭秘:从原理到应用,全面解析键盘如何识键如神
    键盘扫描揭秘:从原理到
    恒流驱动:终极指南 - 原理、优势与应用场景
    恒流驱动:终极指南 -